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ABSTRACT

Presented in this report are the results of an investigation to
determine analytically two thermodynamic transport properties --
difference in specific heats and the change in entropy -- as described
by five independent equations of state for gases.

Change in entropy and specific heats of gases are used in thermo-
dynamics work to evaluate properties of gases undergoing change of
state such as flow properties behind shocks. Change of entropy is a
logical starting point for this work and where applicable properties
are known at high temperatures these equations may be used.

Steam was used for illustrative purposes because it is a well
defined, thoroughly explored gas.

The development of the equations precedes each equation in a
logical, straightforward manner and ends with the desired properties
in terms of known thermodynamic coordinates.

Comparison of the calculated change in entropy is presented in
bar-graph form in Figures 1 and 2 for these equations of state for a
real gas, superheated steam. A comparison of the difference in specific
heats for these equations for the same gas is given in Figure 3.

In both the entropy change and the difference in specific heat,
good agreement is found among the five equations of state.
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I. INTRODUCTION

The purpose of this report is to determine the dif-
ference in specific heats at constant pressure and constant
volume, the ratio of these two, and the change in entropy
for five equations of state. These are the perfect gas,
Callendar, Dieterici, Berthelot, and Van der Waals equations.
After these relations have been established, some examples
of how they might be used will be shown for superheated
steam.

II. DISCUSSION

It is desirable to obtain the difference in specific
heat'at constant pressure and the specific heat at constant
volume for a substance in terms of pressure, volume, and
temperature.

Heat capacity may be defined as the ratio of heat
entering the system and the change in temperature of the
system or substance. The instantaneous heat capacity, or
specific heat, is defined as this ratio as both the heat
added and temperature change become smaller and smaller.
Written in mathematical terms, C = dQ This has a unique

dT
value when the pressure or volume of a substance is kept
constant; thus, Cp =() and Cv = This requires,

then, that specific heat be a function of at least two
variables in thermodynamics.

For two reversible paths joining two equilibrium
states of a system from Clausius' theorem we may write:

if  f
r =0or +iff0

R1 R 1 T RI  T R 2  T

where R1 and R2 refer to the path taken from and to points

i and f in any thermodynamic system.

"i f lfi f

T Rf T1



which means that si d is independent of the path takenT

and allows a function to exist in the coordinates of the
system whose final value minus the value at the initial
points equals the integral f. We may call it the

Ri T

entropy. If the two states are made infinitesimally near,
the integral may be dropped and the difference replaced by
the differential. Therefore, dQr • It is interesting

T

to note that although dQ is not an exact differential, ds
is exact. The reciprocal of the Kelvin temperature is the
integrating factor. Dividing both sides by dT and multi-plying by T gives dQ Tds " If we restrict this expression

to constant volume aid constant pressure, respectively, we
get:

To show entropy as a function of two thermodynamic
variables, we will use the following two theorems in mathe-
matics.

Theorem 1. If a relation exists among x, y, and z, we
may imagine z expressed as a function of x and y; whence,

dz = --z dx + (z) dy.kr-y (77YIX

If we let:

M --()y and 1 ,()x; then, dz = i dx + 11 dy,M y

where z, H, and U are all functions of x and y. Differ-
entiating 1 partially, with respect to y, and N with respect
to x, we get:

" y ay YR

Since the two second derivatives on the right are equal,
it follows that: .

\y) x = k)Y

2



This is known as the condition for an exact differential.

Theorem 2. If quantity f is a function of x, y, and z,
and a relation exists among x, y, and z; then f may be
regarded as a function of any two of x, y, and z. Similar-
ly, any one of x, y, and z may be considered to be a
function of f and one other of x, y, and z. Thus, regard-
ing x to be a function of f and y,

dx ( x) df + (x)f dy.

Considering y to be a function of f and z,

dy l df + fdz.

afz ) (4)

Substituting this expression for dy in the preceding
equation, we get:

d (ay)f (f) ] df + [() f

But, dx ax df + ax dz.

Equating the dz terns of the last two equations, we get:

lax L\ Z) =~x 1.a\ aj a3y) f f 4Zf "XIkz~

It may be shown that Cv and (_Td P Cp.

To arrive at the difference in specific heats in the
pressure, volume, and terperature coordinates we rlay use
entropy a- a function of T and V, antl T an(! P, respective-
ly.

ds a (s\ dT + (sT dv. Multiplying through by

as\ V.

T9 Tds T ~ dT + T fa\) dv =Cv dT +T1.) dv

3



From the equation of the lelmholtz function A = U - Ts,
we get the differential resulting in an infitesimal change.
dA = dU - Tds - sdT = -pdv - sdT, this is an exact differ-
ential since A is an actual function. From the above mathe-
matical theorems we see that _(a) (s) Now.

Tds = Cv dT + T dvkiTv

Imagining entropy to be a function of T and p we
obtain: ds ) a dp. Multiplying through by

T d T dT + T (as\ dp = Cp dT + T (a\dp.(2aTds T T p  4pJT (2pJT

From the change in Gibbs function, G = H - Ts, dG = dH -
Tds - sdT dG vdp - sdT, an exact differential. There-
fore, so now

= Tds = Cp dT + T (-av) dp

Tds = Cp dT - T v) dp.

Equating these two equations: Tds = Cp dT - T I ) dp

Tds = Cv dT + T (*) dv

Cp dT - T (v) dp Cv dT + T (ap) dv ; solving for

T (3v dp T v ) d

dT, CpdT CvdT T (24? dp + T (a dv

dT - T (v) d T (2) dv. Imagining T toCp-"-- pCp-Cv DT v

be a function of V and p, dT = (3T) dv + (T) dp
TVp ap v

so T ) dv (T) dp T - (av) dp + T (a dv.
rV p P v Cp-Cv - p r *a V

4



Therefore, the terms corresponding to dv and dp on each
side of the equation are equal.

(OT) T P nd (T) -_ ---- ---

p -Cv v 7 v Cp-Cv DT p

Cp-Cv = T (2 )  (Ov) and Cp-Cv = T V)  (a
aT v a-T p p dav

whichI of course, is the same from each equation.

To show clearly that Cp-Cv is always positive for all
known substances let us get the change in pressure with
respect to volume instead of (4p) in this equation.

aTv

To do this let us use the two mathematical theorems
discussed earlier. Suppose a relationship exists between
pressure, P, volume, V, and temperature, T. so that
f(P, Vg T) = 0. Let us imagine P as a function of v and T.

dp = ) dv + dT and v as a -function of p and T.*V T v

dv = (av) dv + (P) dT and v as a function of p and T.
ap T aT v

dv: (=v ) dp + (Ov ) dT
Op T 3T p

dp = (a (v dp + (3v) dTl + (0D cT

-(ap (3v) cdp I (a~ Ov dT + (22) dT
IvT TpT *vT T-" p aT v

leT (~ V) + (4)vdT
dp = (av ) ( Tv) dp + +

Now, of the three coordinates only two are independent.
Let us choose p and T as the independent coordindtes. The
above equation must be true for all values of dp and dT.
First, let us make dT = 0, and dp not equal 0.

Then, dp-(a v)T ()T dp + 0 or (aE Ca) 1
FVTapT' vT W-pT



If dp = 0 and dT not equal 0 then,

0 (2k) ( v ) 0 + (ay)) (av)+ (a) dT
avT 3 T I T -T p * v d

so then, the coefficient of dT must equal 0.

(2k) () (a) 0 Ca) -

av T * v 3v T 97p a'i v

(a = ( T ( ; substituting this relation into

the specific heat difference equation we get:

Cp-Cv =T (a .) C3v) =T L )~ (3v)] Cay)• 45 v -p PT' -p

Cp-Cv = -T (_v)2 (p)
v T p avT

First of all, it may be remembered that(a-2 is always

negative for any known substance so the two negative signs
when multiplied will give a positive. T will always be

positive and (v) is squared, and, whether positive or
aT p

negative, the square will be positive. Therefore, Cp-Cv
will always be positive, or Cv is never greater than Cp.

It may be noted that as T approaches absolute zero the
(av)

heat capacities are equal. Cp may equal Cv when O-) = 0

as in the case of water at maximum density. Next, we may
determine the ratio of specific heat as a function of
P, T, and V,

From the two Tds equations derived previously,

Tds z CpdT - T nv) dp Tds=CvdT+T UP) dv=P aT v

at constant entropy ds : 0 and CpdT a T (3v) dp
3T p

6



CvdT -T ( -p ) dv ; divide second into first
aT v

- T p ap V av s O but from the mathematical

theorems we may rearrange our second term of

+ (a(av)
av T T (1p 0 to get an equality for

(a) T) 1 : (3p) Cay) - ap)
[;T p 7p v Tv T 3-a7 p v

(T) (a_) (av) . 1  (av) (T) - (3v)

3P v av T 7T p 7T p ap v p T

Substituting in the specific heat ratio Ci equation we get:
Cv

CP .(v) QT) jap) . v) (2)
Cv 7T p 7p v av s apT jv s

(av) (2z) or - (av) (£j)
p T 3v s CV p T av s

There is possibly another relationship between
P, V, and T for entropy so that the fundamental Tds equation

mipht be used for a2 , where an identity might be obtained
Cv

for a) This may be accomplished by using a fundamentalav s'

mathematical theorem which will relate entropy (s) to
pressure (P), volume (V), and temperature (T). It is known
that entropy is a function of p, v, and T and that a
relationship exists among p, v, and T so that entropy may
be regarded as a function of any two of p, v, and T.
Similarly, any one of p. v, and T may be considered a
function of entropy and one other of p, v, and T. Thus,

regardinp p to be a function of s and v,

dp - ds + (±i) dv ; and considering v to be a
as V 3v s

7



function of s and T, dv = (av) ds + (av) dT ; substituting

s T T s

this expression for dv into the former equation:

dp = (as)v ds + (aP) a(v) ds+(av) ]T
-dTds + as dT]

fdp dv s TTs

dp - (22) ds + (12) (av) ds + (Q_2) (av) dT
as v av s T" T av s T S

r(3=D2) + (av)1 ds + ( aj) (j) dT
ds v + vs s T I av s T s

Equating the dT terms of the equations for dp we get:

dp = ) ds + (aT) dT

dp( Zj) (av) (av)as v + v s s T] + dT

(ap (ap (av) or 1 _(aT) (ja*)
a# s TT- s -p s 3v s aT s

Qks (12) so.. 50v O p ~ T)av s =  T s 3v s Cv Tp T , s vs

From the equation of the difference in specific heats,
we will obtain the relationships of p, v, T and other con-
stants for three types of gases. The first will be the
ideal gas equation. pv RT

(DV) 2  (1&) ((RT) 2

Cp-Cv 2- T ((32 =(a ) . R
3T p av T T P 3 T p "; 2

2vT ""72 Cp-Cv:- T -T R 2
av V P2 ;2 p2 VZ'

R2 T2

but R2 T and Cp-Cv = R for an ideal gas,

8



Next we will get the difference in specific heats for
a gas that follows the Van der Waals equation of state.

(P + a) (v-b) = RT ; T (p + a) (v-b)
v2 v

(OT) - 1 [(p + a) + (v-b) (-2a) squaring this term-v p R V2 3 ];surn hstr

+(v-b) (2 2

we get: R2 (v-b ( J 2 inverting this

we obtain: (av)2  R2
IT +.v - 2a(v-bfl 2

I V2  V3i

(j) 2a RT 2a (v-b)2 -RTv 3  RTv3 - 2a(v-b)2

3V T v3  (v-b)2  v3 (v-b) 2  v3 (v-b)2 J

Cp-Cv z -T ( Tv )2  (a )

Cp-CV [[ TR RTOY?2J J2[ (v-b)2J

R 2 T RT v 3 - 2a(v-b) 2

[P +. a 2a (v.b42  v3(v-b)Z'V4 2 : -j vI- I
Van der Waals' equation.

The difference in specific heat for a gas that obeys
the Callendar equation of state:

RT a p(v-b + a) where n z -4
Tn

9



(RT, a

(30) Fn -T + bj R + n
~Tp aT Jp PTn + I.

a
= I ) . + na 12~(v-b + 7n) 0 - RT

7T P P Tn + 1J av T -(v-b + a)r2

Cp-Cv -T _a) T j+ 2 RT J
T p av T 1 pT+ (v-b + a

RT2 IRTn~l + pna 12 where n10 ; n +13

IpTnl+l (v-b + a)3

12

.Cp-Cv zRT 2 RTT 1I CalJlefdar' s equation.

Berthelot's equation of state:

p zRT -a RT a
vb TvZ or vb- 2

Cp-Cv z T
aT p av T

[(RT -a )
a.2. ID% a~ 1- T -T 2 2a
~avT av jT (v-b) T

I(RT -a - P) a(RT) (
a 7bT2 1 - r- - ad

aT [PIS aT p 12Tp ap

10



0o (v-b)R - RT (dv) - (Tv2) 0 - a [T2V U7 p + v2J

(v-b)2  (Tv2)2

o R (v-b) - RT(dv) 2aT v(dv) + av2

dTp + dT p

(v-b)2  (Tv2) 2

o RT2V4(v-b) - RT 3V4(dv) + 2aTv(v-b)2(dv) + av2(v-b)2

Tp 77 p

T 2 v 4(v-b )
2

RT2V4(v-b)-RT3V4 (dv) + 2aTv(v-b)2 (dv) + av2(v-b )2 =0

RT 2v 4 (v-b) + av2 (v-b )2 =(dv)p [RT 3V4 - 2aTvO-0b2]

(3v) -RT 
2V4 (v-b) + aV2 (v-b )2

T p RT3V4  - 2 aT v ( 7-b )-

(av)2 =RT2v4(v-b) + av2(v-b)2] 2 RT2v3(v-b) + av (v-b)2 1

7p RTv - 2aTv(v-b)z - RT3VI - 2aT(v-b)'

CP-Cv =- T -
3T p av T

Cp-Cv =-T RT23 v-b + 2a(v-b) + 3

RT3 (v3-b + av(vb)2J 2 -b)2 T v



CPVRT (v-b) + a/V2(v-b)2j2T +;2 a±

I ~VT

2a RT

TVT + ( V-b)21  (-

Dieterici euation ofstate: p-T
eq p (v-b)

-a -a -a
M Rrvv a "v 1

Ca (RT e IT RT (vbe (RTV2) e
3v T [v -- b) (v-b)lJ

-a -a
M a 1 V

0~ R N I(-b)(1vTr) - 1 a ~ T-~TET
V 1 (v-b)2  b)

-a -a

I (RM (RT e )
(V a v-b __________

DT p aTv )p

-a -a
aR a

RTv (. + RTv

-a -a

RT [v~b)(v-b)2 I
12



a ra 1
77 + 1 v-b L777 + 1
T-b- [(a)~21 [(v b)Te! a ]

a a a
TC'vb) - 3Tp'2 (- b

M' + i (av) 2  1 + RTv

T-aae~ 3T pa

Cp-Cv i vb z RTv -b ( )2

-a

-. _ [V b. a a Re
"_.__ V RTv2  vb2

RTv 2  vJ VIb

Using properties of superheated steam from a point
near the saturated line to a point far away from the
saturated line, we may compare the values of these three
expressions for the difference in specific heats.

The first to be calculated will be the ideal gas case.
This is a constant and is equal to the universal gas con-
stant. The universal gas constant is approximately 1545
ft lb/lb mol°R. Cp-Cv a 1545 ft lb/lb mol°R for the ideal
gas*

To solve for the two constants we will employ the
properties of the critical isotherm at the intersection of
the saturation line for the Van der Waals, Berthelot, and
Dieterici equations. For the callendar equation, we will
choose two points in the superheated steam range of values
to obtain these constants. This is done because the
Callendar equation does not apply at the critical point.

Berthelot' s equation:

Since the critical point is the limiting position as
two points on each of the saturated liquid and the saturated

13



vapor at the same pressure and temperature approach each

other, it follows that at a maximum point on the curve, the

slope is zero. This means that (a ) = 0; also, since theslopeT

critical point is a point of inflection on the critical

isotherm, V2T = 0

From these two facts, plus the equations themselves, we may
determine the two constants.

Berthelot's equaton: p = RT - a
v-b FV2

RTa
) -RT - - 2a ) 2a _ RT

av T - \ v TI\ av/T (v-b)2  - T (

S-6a + 2RT 2a RT

a 2R ----

F7T (v-b) 3 '/'3 - Tv) 2

6a 2RT 2a RT 3a RT
- v-b) 3  TV- (v--b) 2  Tv4  (v-b) 3

Dividing one by the other, we eliminate a and obtain b,
in terms of the critical volume.

2aTv RT(v-b) 3 v-b 2

TO 3a (v-b)2 RT v

2
v-Tv = b; or vc : b

Putting this into the first equation we pet:

2a RT
T(3b) 3  (3b-b) 2

14



2a RT 2a T2 2a4b 2  8a

T(3b) - T27b3 T 27bR

or = 27bR and putting these two values into the equa-

tion we obtain:

Ba a - i _ a

Pc=R 27bR - (3b) 2 "271 2 #/- 9b2
3b-b 27bR 127 bR

1 1
-V bx f4]8 x 8lbI f2-- 4t 6 b
27b 3X4 y 2l 27b 2

27abR a

/ b27b3aR - 1 N/-4 -l -

~aR

3 b q2 x 9b T4x9)b 12b 4 3b

-a -a -a
R RT v T.RT RTv a RTv RT

=v ev17T v_ .)e =RTv2 + e - (v-b)2

-a T a RT -a
e1r' (v-b) R__ - "- rb) 2  e eRTV RT_

eRvv LT oa-1
(v-b) [: v0

is



-a

RTe r-2a 1 1 a Ri
(4 )T v-S RTV3 + ( v-b) 2] + F- I v2  

--. j T

-a -a

(v-b)e T ( a )-e

(v-b)2  -

-a

T & V- [v-b) 2  RvJ+ RT 7 vb]

[a (v-b) a-1

[ (v-b)2 j

-aI

_____ R I 1 2a 31+1 a. 1 Iv-
(4V 2 T v- =-2 Wl'3  -1

2 
- ( -b 2

-a 

I11RTv -. 2a 1 +1 a 2-
= RT e (v-b) 2  RVT

(V"b2  -VTv-bIII

a1 1 - 2a a 2

R mv 1 Tv3 RTV2  vm

v-b v-b)2  3 2 vib

a: v-) - (v-b) I v-b)VzRT -b

16



1 2 ][= 0=V-) 2" v-)
t~~ V-b)v - v-b v- 0

1 - 2 (v-b) v  v"(:'32 = (V- ' (v-b)' = -r5

2v-2b v ; 2v-v 2b v = 2b

Substituting this back into the first equation for derivative

we get a 1
RT(2b) 2 b-b 0

a 1 ab a

Substituting these answers back into the equation of state
we find:

a4Rb

Pc = Ra• ae "2  a
4Rb(2b-b) = jy- = qeTbz = Pc

Van der Waals' equation of state:

ao RT a" P+ - vb = RT or P = - -"

(P +1)G-b)v-b V

131D)T -RT + 2a,: 2a RT

T z (v--b) 2  --T - T (- 2

a2 2RT 6a 3a RT
T X (v-b) 3  - 0 = -b" 3

17



2av4 RT (v-b)3  2...- = - = - V v v-b
v33a (v-b)2 RT 3

1 2a RT 2a RT

-£ v = b = vc rM73 = - b)2 = '2OT Z 7b2
3 3 Ob-b

2a RT 8a
27b Tc 27Rb

Finally, substituting into the equation of state we get:

Pc = 8a .a a-3a a

27b(2b) 9b 27bz PC

Since the Callendar equation of state does not apply
at the critical point, we may obtain the approximate values
of its constants by substituting values of P, T. and v in
the superheated steam range where this equation is applica-
ble.

Point one will be a pressure of 40 psia, a temperature
of 300 0 F, and v = 11.04 ft 3 /lb specific volume. The first
point will be p = 80 psia; T = 500°F; and v = 7.02 ft3/lb.

3U

a = (-v + b + RT) T
n =(-126.2 + b + 1545x960)(.96) 3 x 10

p 11,520

a = 873x107 (b + 128.5 - 126.2) = 873x107 (b + 2.3)

b = 873xi0 7 (b + 2.3) - 4.8 = 873 b + 873(2.3) - 4.8

401xl0 7  401 401

2,175b-b = 4.8 - 5 = - 0.2 = 1.175b

b z -,17ft 3/lbmol

18



Using another point of p, v, and T we find:

a,b, p = 160 psia, T 900 0 F, v = 5.015 ft3/1b 10
I~ 0

a = (-v + b + RT)Tn (-90 + b + 1545x136.0)(1.36) -Tx10 0

P 23,050

a = (b + 91.1 - 90) 2.781x10 1 0 = (b + 1.1) 2.781x101 0

Equating these two we get: (b + 1.1) 2.781x10 1 0

(b + 2.3).873x10'°;(b + 1.1) 2.781 = b + 2.3 ; 2.781b+
.873 .873

1.1(2.791) b + 2.3
0.873

3.185b - b = 2.3 - 3.5

2.185b = -1.2 b = -0.55 Callendar's equation.

a = (b + 1.1) 2.781x101 0  (1.1 - 0.55) 2.781x101 0 = 1.53x 010

For the Berthelot equation of state for steam:

vC = 0.906 ft3/lbmol Pc = 459,000 lb/ft 2

Tc = 705OF = 1165OR

b = ve = 0.906 = 0.302 ft3/lbmol
7- 3

(12b pc) 2 = 2Ra a z 3b(12bp )2  (.906)(4(.906)4.59) 2x10 1 0

2 x 1545
a :(.906) 278x10 I0

3.09 x i03  = 81.4 x 107 a 8.1 x 108 lb
ft2(ft3 )2 OR

19



a = 8.14 x 108 (ft3)2 OR lb
Ibmol f2

Calculation of Cp-Cv for Berthelot equation at point one,

p = 1440 psfa, T = 660OR

v = 700 ft3/lbmol

a = 8.14 x 108 (ft3)2  0Rlb b = 0.302 ft3

(lbmol) 2  rt2  ibmo

Berthelot' s equation:

Cp-Cv = T ... + T2v2

RT 2a
(v-b)2  Tv 3

6.6 x 102 1545 8.14 x 108

L700-.302 (6 .6)2x49 2xl0-4

1545 x 660 2(8.14)(108)

(700-.302)2 (660)343x106

Cp-Cv x 660 [2.207143 + 0.003812

2.081 - 0.00719

Cp-Cv z 1556

Dieterici's equation of state:

p 1440 psfa ; T z 660°R, v 700 ft3

1 MO

a a 3.2x10 6  ; b x 0.453

-a
Cp-Cv-x Re [ RTv. _1 a

a I (v-b)2  RTv 2 (v-b)

SRTv 2  v-b 2
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-3.2 x 106

Cp-Cv = 1.545 x 1O3 e 1.545 x 103 x .66 x 103 x 7. x 102

3.2 x 106 - 1

1.545 x 103 x .66 x 103 x 49 x 104 700

[I 3 .2 x 10 6  12

1 .55 X 103 X .66 x 103 x 7 x 102

x[ - 3.2 x 106

104 1.545 x 103 x .66 x 103 x 49 x 104 x 7 x 102]

2

Cp-Cv = 1.545 x 10 3  El + .004]

.0045 [ 1 - 1 12
e L15.6 X 104 7 X 1021

x 1 - 1
49XlO4 109.X1O 6]

Cp-Cv .s545 x 103  [1.01] C.0204 x 10 - .0092 x 10'.

[1.01-] [.641 x 10-4 - .143 x 10-2] 2

- 1.545 x 10 3 2.03 x 10- 6 1545 [2.03] x 10-6

(-0.1374 x 10-2)2 (1.37)2 x 10-6

* 1545(2.03) 1668 ftlb

1.88 lbmol0 R

a =1400 atm (ft3 )2 b 0.488 ft3/lbmol

ibmol Van der Wdals equation.

= 1400 x 2116.2 lb (ft 3 )2 2.96 x 106 lb (ft 3 )2

t2 bmol 2 bmol

T = 200OF : 660°R; v z 38.85 = 700 ft 3

lbmol
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R = 1545 ftlb p = 10 psia = 1440 lb abs.

lbmol R?-2

Cp-Cv for the Van der Waals at this point will be calculated
first.

Cp-Cv =R 2  T + 1 / 2  2 [RTv3 -2(v-b)
p+ a - 2a(v-b) I v3 (v-b) 2

P 2  
[V3v

-(1.545) 2X106  [660 1/2

440 + 2.96 x 106 - 2(2.96 x 106)(7. x 102)

(7.)2 X 104 73 X 106

x [1.545 x 103 x 6.6 X 102 x 73 X 106 - 2(2.96 X 106)72 X 104]

73 x 106 x 72 x 104

r 2
- 2.39 x 106 [ 660 1/2 ]

144O + 296 - 6 x 106

49 49 x 104.

350.0 x 1012 - 300 x 10239 660 1/2 2

179500 x 1010 1440 + 6.05 - 12.2

2.371 [r2660r4 106 =2.18 X 106 ftlb

1= 2.39 1.4X36 X 10 '  lbmol°R

- 1518 ftlb

lbmol R

Cp-Cv for the Callendar equation for superheated steam at
these same conditions is:
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13 10 2

Cp-Cv RT2 RT " + 3 Da
13
3

pT (v-b + a)
10

13 10 2

Cp-Cv 1545(660)2 1545(660) 3 + - (1440)(2.96x10 6)

10

1440(660) 7 (700-0.488 + 2.96xlO6

10

(660)

1 3 1 3

Cp-Cv 1.545x(6.6) 2xlO 7  1.545x10 3 (.66) x(103) 3 +1.44xlOlO

13 10

1.440x10 3 (.66) 3x(10 3 ) 3(7xlO
2+2.96x10

6

10 1 0

(.66) 
3x(103) 3

Cp-Cv 1.545x(6.6)
2  x 107 0.2558 x 1016 + 1.44 x 101 0

10.2385 x 1016 (7 x 102 + 18 x 10-

Cp-Cv " 1545 x (6.6)
2 X 10, [0.2558 x 101

6  2

"0 L1.6506 x 101 8

Cp-Cv 2 1545 x 43.6 x 104 (0.1545]2 x 10-4
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Cp-Cv = 1545 x 43.6 x 0.0239 = 1545 x 1.04

- 1610 ftlb

lbmol°R

Cp-Cv = R = 1545 ftlb constant for ideal gas.

lbmol 0R

To see how closely these gas equations represent
superheated steam, we will take two points for each gas to
determine the change in entropy for a reversible, isothermal
expansion of steam.

Fi.'om the equation for the change in entropy as a
function of two thermodynamic variables, we get:

ds = - dT + ( dv and s) ()
aT v av T av T ;T v

ds = ( vs) dT + ( ) dv. For a reversible isothermal:aT v aT v

dT = 0 so ds (.L,) dv.
aT v

( for a Van der Waals equation: p v-b

Tv- - v'7

[ T - v v-b

Callendar equation: p RT
v-b + a

24



-(RT (v-b + a ) R - (RT)(-na )

F n Tn  Tn + 1

aT _ v (v-b + a )2 -

Tn

-a

Dieterici equation: p = e RTv

v-b

-a i
RTv -a -a -aa(RT, e ) "-- RTv RT

Tv-b R e a ) +e =Re a +1
a T b IT RT-v2  v-b 1RvT

perfect gas: pv RT p = RT
v

S(RT
v R

aT v v

Berthelot equation: p =- a
v-b Tv2

[( - a)] _a

a T v v-b T 2 v 2

ds (R) dv Van der Waals equation:
v-b
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a RTria
ds (Vb+Tn) R + Tn+l dv =Rdv + RT nadv

(vb 7 a )2 -)(v-b + a ) Tn + l(v-b + a )
K Tn Tn

Callendar's equation.

Dieterici

-!a
d s =Re.~ Fv + dv- a dv R dv

v-b 1RvT j1 a a

ds = Edv perfect gas e Rv(v-b)vT e Rv(v-b)
v

ds -.. v +...7-2 dv IBerthelot's equation.
v-b T 2

To get the change in entropy, we will integrate the
equations for s2- s

ds2 v- dv R 11 [nv-b IVa R 11n(v 2-b)-ln(v,7b]

R 1ln 7T) Van der Waals

a 2  V2  Vfds R +v dR rn(v-b+a-)1 +SfV1v-b+a (n+If v-b+a) 2
ST 1  1 L )TnJI
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RTna -21
- mv-b +-!i

Tn~l 1 -2+1 TnV

a V
Rl 2bF Tna 1__)I

tI-+! Tn~1 I v-b+ a

d =R n.2Tna 1__ __

RI, 1-(.b+) m'n v2-b+.2 -+
kv TL Tn n

R 1 v-+ n Tna 1
\1-b+.±L ' Tn41  1 v1 -b+.. a v 2-b+ a

Calleridar' s equation.

-a

r RT e F~ Y-a -a

( R~v
OEMa a-

V RTv
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-a

fv 2 Re~ r S2f R- [a. f+
V1  v-b LTv S1

-a -a V a

R~v R~vRTx
Re a dv Re a

(v-b)' RTv +v-b d e T
-a

dx = dv

dv = -RTv 2 dx

ae -xRTv2  Re -Tv 2 dx)
dx + P -

Tav(v-b) (v-b) a

Re - dx2 x let v-b avvdx L.T vdxwhere v>>b
(v-b) a

Re-Xx R2Te-xa dx
Re x - a RTx

j V RX dx - Re- dx

VI x
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[fV2 e fV xfvd2 j
vi V1 x

R~ -X dx. 2 ! " "eX~

R [e - -  nx -x + (-x)2 + (-x j =

-a2a - 2 3 1 2
RTv a a RTvR e -n 77v "r 2" +

2o2, 3"3!

vi

R a +:R -e in RT TV

~1J -e- in\
3'3 ! 2 2

B29

a 3 RWTv ! . 2

R~ ~ev 77 Tv RvI----

3"3! 2'2!
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(a-a 
2

a TV2 e a ( a a
RTv 2 303! in RTv 2  RTv2 RTv

(avi maa2
3RTv, + e Tv + in + (
3" 3, RTv1  2'2'

J S22
ds R dv = R In V2 Perfect gas.

Sl , v VI

ds / _. + = R [n (v-b)] a+St 1 v-b T" v 2 Vi (v)v

(v,-b) a a
- R iln (vi-b)- T 2V2  + T2v Berthelot's equation.

The two points used for the test for four of these gases
will show how closely each represents the change in entropy
of superheated steam. The first will be:

temperature 600°F = 1060°R; pressure1 = 1200 psia

173,0001b v, = 0.4016 = 7.Sft 3

ft2  lbmol

The second point will be: temp z 600°F 1060°R;

pressure 2 = 20 psia = 28801b/ft 2 ; v 2  31.47 626ft9/lbmol

.(6s26 - 0.488)

Van der Waals' equation: s2 - s= R in 7.2 0.488)
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s - s = 1545 in (625.512) =1545 x n (89.05)
7.012

s - s = 1545 x 4.485 = 6930 ftlb
2 bmol

Callendar's equation:'' ' a

v s =R in V 2- b + Tn +Tna 1 a

Vi- - Tn + v I- b +- V2- b + a

Tn Tn

where a = 1.53xi01 0 b = -0.55

626 + .55 + 1.53xi010

s 2 - s3 = R in (+.06x103  1060(10) 1.53x1010

.5 + .55 + 1.53x1010  3 (1.06x103 )IA
(1.06x103)T1 1 _ __ 1o

7.5 + 0.55 + 1.53x10 10  626 + .55 + 1.53xi1010
71.06)1I1010 (1.06")1010

S2 -Sl l~~~n (626.55 + 1.26)+4.4T78]
1 8.05 + 1.26 " L 3 -

s - s, 1  R 14.21 + o.4761 = 1545 14.6861

S 2 - s1 = 7240 ftlb
"MO 1
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a 3.2x10 6

RTv! l545x103xl.06x10 3 (7.5) 0.26 Dieterici's equation.

a 0.26v 0.26x7.5
RTv2  V2  626

S2 - S1  0 1545 [.0031 -, - in (.0031) - 0.26

+ e

+ e"=6 + in(.26) + .015

s2 - s I 1545 [.0031 - 1 + 5.76 - .26 + 1.3 - 1.345 + .015]

s2 - s = 1545 x 4.47 = 6900 ftlb
ibmol

Perfect gas:

s2 s nv2 55xI 626
S2 - --I-= R in 1545 x in - 1545 x 4.42

Vi 7.5

S2 - Sl = 6830 ftlb

ibmol

Berthelot's equation: b = 0.302; a = 8.14x108 lb (ft3  )2ORFt 2 ib mol1

6 2 - sl.= R in (v 2-b) - a + a

2 1b

s2 -'s, z 1545 in (626 - .302) - 8.14x108

7.5- .302 (1.06) 2x106x6.26x10 2
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+ 8.14x10 8

(l.06) 2x10 6x7.5

s 2 - si = 6900 - 1.158 + 0.967 x 102

= 6900 + 95.5 = 6995.5 ftlb
Ibmol

From the steam tables by Keenan and Keys, "Thermodynamic
properties of Steam," we obtain the actual change in entropy
of the two states. Entropy at 20 psia and 600OF = 1.940,
and entropy at 1200 psia and 600F = 1.410 Btu/lb.
This is equal to 1.940 - 1.410 = 0.53Btu/lb.

In ftlb this is 0.53 x 18 x 778.3 = 7410 ftlb
lbml 1 1

The variation for each gas equation is shown in Figures 1
and 2.

The percentage deviation for each is as follows:actual-calc.

actual

Van der Waals - 7410-6930 --480 x 100% 6.48%

7410 7410

Callendar - 7410-7240 2.29%

7410

Dieterici - 7410-6900 6.87%

7410

Perfect gas - 7410-6830 7.83%
7410

Berthelot - 7410-6996 = 5.60%
7410
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It is obvious that, of these cases considered, the
Callendar equation describes superheated steam best. The
same could be done for other gasses to determine which
equation would fit them best.

III. CONCLUSIONS

It can be seen that the differences and ratios of
specific heats and change in entropy may be determined for
the considered five equations of state.

Comparisons of the difference in specific heats and
change in entropy for superheated steam at a few selected
points show that these equations fit the actual case fairly
well, and most of the equations are useable for engineering
calculations.

These reduced equations could be used to establish use-
ful engineering design tables for several frequently consid-
ered gases.
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